图解HTTP——了解Web及网络

1.1使用 HTTP 协议访问 Web

Web 页面根据 Web 浏览器地址栏中指定的URL,Web 浏览器从 Web 服务器端获取文件资源(resource)等信息,从而显示出 Web 页面。像这种通过发送请求获取服务器资源的 Web 浏览器等,都可称为客户端(client)。

这里写图片描述

Web 使用一种名为 HTTP(HyperText Transfer Protocol,超文本传输协议 )的协议作为规范,完成从客户端到服务器端等一系列运作流程。而协议是指规则的约定。可以说,Web 是建立在 HTTP 协议上通信的。

1.2HTTP 的诞生

1989 年 3 月,CERN(欧洲核子研究组织)的蒂姆 • 伯纳斯 - 李(Tim BernersLee)博士提出了一种能让远隔两地的研究者们共享知识的设想。基本理念是:借助多文档之间相互关联形成的超文本(HyperText),连成可相互参阅的 WWW(World Wide Web,万维网)。

现在已提出了 3 项 WWW 构建技术,分别是:把 SGML(Standard
Generalized Markup Language,标准通用标记语言)作为页面的文本标记语言的 HTML(HyperText Markup Language,超文本标记语言);作为文档传递协议的 HTTP ;指定文档所在地址的URL(UniformResource Locator,统一资源定位符)。

HTTP 于 1990 年问世。那时的 HTTP 并没有作为正式的标准被建立。现在的 HTTP 其实含有 HTTP1.0 之前版本的意思,因此被称为HTTP/0.9。HTTP 正式作为标准被公布是在 1996 年的 5 月,版本被命名为HTTP/1.0,并记载于 RFC1945。虽说是初期标准,但该协议标准至今仍被广泛使用在服务器端。1997 年 1 月公布的 HTTP/1.1 是目前主流的 HTTP 协议版本。

1.3 网络基础 TCP/IP

通常使用的网络(包括互联网)是在 TCP/IP 协议族的基础上运作的。而 HTTP 属于它内部的一个子集。不同的硬件、操作系统之间的通信,所有的这一切都需要一种规则。而我们就把这种规则称为协议(protocol)。

这里写图片描述

图:TCP/IP 是互联网相关的各类协议族的总称

TCP/IP 协议族里重要的一点就是分层。TCP/IP 协议族按层次分别分为以下 4 层:应用层、传输层、网络层和数据链路层

TCP/IP 协议族各层的作用如下:

应用层:决定了向用户提供应用服务时通信的活动;TCP/IP 协议族内预存了各类通用的应用服务。比如,FTP(FileTransfer Protocol,文件传输协议)和 DNS(Domain Name System,域名系统)服务就是其中两类。HTTP 协议也处于该层

传输层:传输层对上层应用层,提供处于网络连接中的两台计算机之间的数据传输。在传输层有两个性质不同的协议:TCP(Transmission ControlProtocol,传输控制协议)和 UDP(User Data Protocol,用户数据报协议)。

网络层(又名网络互连层):网络层用来处理在网络上流动的数据包。数据包是网络传输的最小数据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计算机,并把数据包传送给对方。

链路层(又名数据链路层,网络接口层):用来处理连接网络的硬件部分。包括控制操作系统、硬件的设备驱动、NIC(Network Interface Card,网络适配器,即网卡),及光纤等物理可见部分(还包括连接器等一切传输媒介)。硬件上的范畴均在链路层的作用范围之内。

TCP/IP 通信传输流:

这里写图片描述

利用 TCP/IP 协议族进行网络通信时,会通过分层顺序与对方进行通信。发送端从应用层往下走,接收端则往应用层往上走。

用 HTTP 举例来说明:

首先作为发送端的客户端在应用层(HTTP 协议)发出一个想看某个 Web 页面的 HTTP 请求。接着,为了传输方便,在传输层(TCP 协议)把从应用层处收到的数据(HTTP 请求报文)进行分割,并在各个报文上打上标记序号及端口号后转发给网络层。然后,在网络层(IP 协议),增加作为通信目的地的 MAC 地址后转发给链路层。这样一来,发往网络的通信请求就准备齐全了。接收端的服务器在链路层接收到数据,按序往上层发送,一直到应用层。当传输到应用层,才能算真正接收到由客户端发送过来的 HTTP请求。

这里写图片描述

发送端在层与层之间传输数据时,每经过一层时必定会被打上一个该层所属的首部信息。反之,接收端在层与层传输数据时,每经过一层时会把对应的首部消去。这种把数据信息包装起来的做法称为封装(encapsulate)。

1.4与 HTTP 关系密切的协议 : IP、TCP 和DNS

IP:负责传输。按层次分,IP(Internet Protocol)网际协议位于网络层。几乎所有使用网络的系统都会用到 IP 协议。TCP/IP 协议族中的 IP 指的就是网际协议。可能有人会把“IP”和“IP 地址”搞混,“IP”其实是一种协议的名称。

IP 协议的作用是把各种数据包传送给对方。而要保证确实传送到对方那里,则需要满足各类条件。其中两个重要的条件是 IP 地址MAC地址(Media Access Control Address)。

IP 地址指明了节点被分配到的地址,MAC 地址是指网卡所属的固定地址。IP 地址可以和 MAC 地址进行配对。IP 地址可变换,但 MAC地址基本上不会更改。

使用 ARP 协议凭借 MAC 地址进行通信,ARP 是一种用以解析地址的协议,根据通信方的 IP 地址就可以反查出对应的 MAC 地址。

没有人能够全面掌握互联网中的传输状况,在到达通信目标前的中转过程中,那些计算机和路由器等网络设备只能获悉很粗略的传输路线:

这里写图片描述

TCP:确保可靠性的 TCP 协议,按层次分,TCP 位于传输层,提供可靠的字节流服务。TCP 协议为了更容易传送大数据才把数据分割,而且 TCP 协议能够确认数据最终是否送达到对方,确保数据能到达目标。

为了准确无误地将数据送达目标处,TCP 协议采用了三次握手
(three-way handshaking)策略。

发送端首先发送一个带 SYN 标志的数据包给对方。接收端收到后,回传一个带有 SYN/ACK 标志的数据包以示传达确认信息。最后,发送端再回传一个带 ACK 标志的数据包,代表“握手”结束:

这里写图片描述

若在握手过程中某个阶段莫名中断,TCP 协议会再次以相同的顺序发送相同的数据包。除了上述三次握手,TCP 协议还有其他各种手段来保证通信的可靠性。

1.5负责域名解析的 DNS 服务

DNS:DNS(Domain Name System)服务是和 HTTP 协议一样位于应用层的协议。它提供域名到 IP 地址之间的解析服务

计算机既可以被赋予 IP 地址,也可以被赋予主机名和域名。用户通常使用主机名或域名来访问对方的计算机,而不是直接通过 IP地址访问。因为与 IP 地址的一组纯数字相比,用字母配合数字的表示形式来指定计算机名更符合人类的记忆习惯。但要让计算机去理解名称,相对而言就变得困难了。因为计算机更擅长处理一长串数字。

为了解决上述的问题,DNS 服务应运而生。DNS 协议提供通过域名查找 IP 地址,或逆向从 IP 地址反查域名的服务:

这里写图片描述

1.6各种协议与 HTTP 协议的关系

我们再通过这张图来了解下 IP 协议、TCP 协议和 DNS 服务在使用HTTP 协议的通信过程中各自发挥了哪些作用:

这里写图片描述
这里写图片描述

1.7URI 和 URL

与 URI(统一资源标识符)相比,我们更熟悉 URL(UniformResource Locator,统一资源定位符)。

URL正是使用 Web 浏览器等访问 Web 页面时需要输入的网页地址。

URI 是 Uniform Resource Identifier 的缩写。URI 就是由某个协议方案表示的资源的定位标识符。协议方案是指访问资源所使用的协议类型名称。

采用 HTTP 协议时,协议方案就是 http。除此之外,还有 ftp、25mailto、telnet、file 等。标准的 URI 协议方案有 30 种左右。

URI 用字符串标识某一互联网资源,而 URL表示资源的地点(互联网上所处的位置)。可见 URL是 URI 的子集。

表示指定的 URI,要使用涵盖全部必要信息的绝对 URI、绝对 URL以及相对 URL。相对 URL,是指从浏览器中基本 URI 处指定的 URL,形如 /image/logo.gif。

这里说一下UTI与URL的区别与联系,举个例子:

统一资源标志符URI就是在某一规则下能把一个资源独一无二地标识出来。

拿人做例子,假设这个世界上所有人的名字都不能重复,那么名字就是URI的一个实例,通过名字这个字符串就可以标识出唯一的一个人。

现实当中名字当然是会重复的,所以身份证号才是URI,通过身份证号能让我们能且仅能确定一个人。

那统一资源定位符URL是什么呢。也拿人做例子然后跟HTTP的URL做类比,就可以有:动物住址协议://地球/中国/浙江省/杭州市/西湖区/某大学/14号宿舍楼/525号寝/张三.人

可以看到,这个字符串同样标识出了唯一的一个人,起到了URI的作用,所以URL是URI的子集。URL是以描述人的位置来唯一确定一个人的。

所以不论是用定位的方式还是用编号的方式,我们都可以唯一确定一个人,都是URl的一种实现,而URL就是用定位的方式实现的URI。

回到Web上,假设所有的Html文档都有唯一的编号,记作html:xxxxx,xxxxx是一串数字,即Html文档的身份证号码,这个能唯一标识一个Html文档,那么这个号码就是一个URI。

而URL则通过描述是哪个主机上哪个路径上的文件来唯一确定一个资源,也就是定位的方式来实现的URI。

对于现在网址我更倾向于叫它URL,毕竟它提供了资源的位置信息,如果有一天网址通过号码来标识变成了http://741236985.html,那感觉叫成URI更为合适,不过这样子的话还得想办法找到这个资源咯,而且人类记忆英文比记忆数字更容易。

知道了URI与URL的关系,现在,让我们先来了解一下绝对 URI 的格式:

这里写图片描述

使用 http: 或 https: 等协议方案名获取访问资源时要指定协议类型。不
区分字母大小写,最后附一个冒号(:),也可使用 data: 或 javascript: 这类指定数据或脚本程序的方案名。

登录信息(认证):指定用户名和密码作为从服务器端获取资源时必要的登录信息(身份认证)。此项是可选项。

服务器地址:使用绝对 URI 必须指定待访问的服务器地址。地址可以是类似hackr.jp 这种 DNS 可解析的名称,或是 192.168.1.1 这类 IPv4 地址名,还可以是 [0:0:0:0:0:0:0:1] 这样用方括号括起来的 IPv6 地址名。

服务器端口号:指定服务器连接的网络端口号。此项也是可选项,若用户省略则自动使用默认端口号。

带层次的文件路径:指定服务器上的文件路径来定位特指的资源。这与 UNIX 系统的文件目录结构相似。

查询字符串:针对已指定的文件路径内的资源,可以使用查询字符串传入任意参数。此项可选。

片段标识符:使用片段标识符通常可标记出已获取资源中的子资源(文档内的某个位置)。但在 RFC 中并没有明确规定其使用方法。该项也为可选项。
有一些用来制定 HTTP 协议技术标准的文档,它们被称为RFC(Request for Comments,征求修正意见书)。

注意:并不是所有的应用程序都符合 RFC。通常,应用程序会遵照由 RFC 确定的标准实现。可以说,RFC 是互联网的设计文档,要是不按照 RFC 标准执行,就有可能导致无法通信的状况。但设想一下,如果这款应用程序的使用者非常多,那会发生什么情况?不难想象,其他的客户端或服务器端必然都不得不去配合它……



完~