Java集合中List,Set以及Map等集合体系详解

概述

  • List , Set, Map都是接口,前两个继承至Collection接口,Map为独立接口
  • Set下有HashSet,LinkedHashSet,TreeSet
  • List下有ArrayList,Vector,LinkedList
  • Map下有Hashtable,LinkedHashMap,HashMap,TreeMap
  • Collection接口下还有个Queue接口,有PriorityQueue类

1

注意:

  • Queue接口与List、Set同一级别,都是继承了Collection接口。
    看图你会发现,LinkedList既可以实现Queue接口,也可以实现List接口.只不过呢, LinkedList实现了Queue接口。Queue接口窄化了对LinkedList的方法的访问权限(即在方法中的参数类型如果是Queue时,就完全只能访问Queue接口所定义的方法 了,而不能直接访问 LinkedList的非Queue的方法),以使得只有恰当的方法才可以使用。
  • SortedSet是个接口,它里面的(只有TreeSet这一个实现可用)中的元素一定是有序的。

Connection接口

—— ## List 有序,可重复 ##

  • ArrayList
    优点: 底层数据结构是数组,查询快,增删慢。
    缺点: 线程不安全,效率高
  • Vector
    优点: 底层数据结构是数组,查询快,增删慢。
    缺点: 线程安全,效率低
  • LinkedList
    优点: 底层数据结构是链表,查询慢,增删快。
    缺点: 线程不安全,效率高

—— ## Set 无序,唯一 ##

  • HashSet
    底层数据结构是哈希表。(无序,唯一)
    如何来保证元素唯一性? 依赖两个方法:hashCode()和equals()
  • LinkedHashSet
    底层数据结构是链表和哈希表。(FIFO插入有序,唯一)
    由链表保证元素有序
    由哈希表保证元素唯一
  • TreeSet
    底层数据结构是红黑树。(唯一,有序)
    如何保证元素排序的呢? 自然排序和比较器排序
    如何保证元素唯一性的呢? 根据比较的返回值是否是0来决定

针对Collection集合我们到底使用谁呢?

  • 唯一吗?
    • 是:Set
      • 排序吗?
        • 是:TreeSet或LinkedHashSet
        • 否:HashSet
        • 如果你知道是Set,但是不知道是哪个Set,就用HashSet。
    • 否:List
      • 要安全吗?
        • 是:Vector
        • 否:ArrayList或者LinkedList
          • 查询多:ArrayList
          • 增删多:LinkedList
          • 如果你知道是List,但是不知道是哪个List,就用ArrayList。

如果你知道是Collection集合,但是不知道使用谁,就用ArrayList。
如果你知道用集合,就用ArrayList。

Map接口

不同于List单列的线性结构,Map提供的是一种双列映射的存储集合,它能够提供一对一的数据处理能力,双列中的第一列我们称为key,第二列就是value,一个key只能够在一个Map中出现最多一次,通过一个key能够获取Map中唯一一个与之对应的value值,正是它的这种一对一映射的数据处理关系,在实际应用中可以通过一个key快速定位到对应的value。综合上面的概念,可以概括出以下几个核心点:

  • Map存储是以k-v键值对的方式进行存储的,是双列的
  • Map中的key具有唯一性,不可重复
  • 每个key对应的value值是唯一的

上图:

1

1

Map接口有三个比较重要的实现类,分别是HashMap、TreeMap、HashTable和concurrentHashMap:

  • TreeMap是有序的,HashMap、HashTable、concurrentHashMap是无序的。
  • Hashtable和concurrentHashMap的方法是同步的,HashMap的方法不是同步的。这是两者最主要的区别。

这就意味着:

  • Hashtable和concurrentHashMap是线程安全的,HashMap不是线程安全的。
  • HashMap效率较高,Hashtable效率较低,concurrentHashMap在多线程下效率更高。
  • 如果对同步性或与遗留代码的兼容性没有任何要求,建议使用HashMap。 查看Hashtable的源代码就可以发现,除构造函数外,Hashtable的所有 public 方法声明中都有 synchronized关键字,而HashMap的源码中则没有。
  • Hashtable和concurrentHashMap不允许null值,HashMap允许null值(key和value都允许)
  • 父类不同:Hashtable的父类是Dictionary,HashMap和concurrentHashMap的父类是AbstractMap

这里说一下重点说一下concurrentHashMap:

因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。

HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,其他线程访问HashTable的同步方法时,可能会进入阻塞或轮询状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

HashTable容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。

使用Map的时机

存储双列结果

有很多情况下我们都需要将数据梳理成双列的结果集存储起来,最常见的就是当查询数据库时,它返回的结果集中,对应字段名key和记录值value就是一个map,当然如果是列表查询,还会在Map的基础上包装一层List,但是它的每一条记录结果的表示形式就是借助Map来存储的,再比如在数据接收时,如果没有合适的对象接收时,可以考虑使用Map进行接收,最常见的就是前端传入json字符串,后端使用Map来接收数据,但是现在基本都采用JSONObject的方式来接收了,但是Map也是可以作为一个备用选项,在没有其他第三方插件可用的情况下,可以考虑使用Map,或者String接收,然后转成Map。

快速定位数据

因为Map的一对一映射的数据关系,利用这一特性,可以快速定位具体数据,现在的一些缓存操作就是利用的这一特点,我们将数据以Map的形式存储在内存中,在缓存的众多数据当中,未来如果需要获取数据时只需要给一个指定的key,可以快速定位到缓存的内容,而不必像List结构那样,需要记住具体的位置才能快速定位,当然如果能够确切记得元素位置,也可以使用List,而且效率更高,但是更多时候是不现实的,我们需要记住每一个元素在List中的位值,数据过多时就比较麻烦了,而且写出来的程序可读性也很差,因为只是通过整型的Index获取,而Map的key可以是任何类型,完全可以定义一个具有明确意义的内容。

需要唯一性存储的时候

因为Map的key具有唯一性的特点,我们完全可以利用这一特点作为一个“变异版”的Set来使用,我们知道Set的特点就是不可重复,实际上在Java中,HashSet确实就是这么干的,它将存入的元素放入一个HashMap(Map的一种实现)的key中,而Map中所有的value都是一个固定的Object类型的PRESENT常量,因为它的key不可冗余的特性正好符合了Set的特点,所以在HashSet的底层实现就依托于HashMap,而且Map本身也是无需的,注意:这里的“无序”是“不保证有序”,而不是“保证无序”,这两个概念是有区别的,前者说明结果可能会有序,也可能无序,不能保证;而后者说明结果一定是无序的。所以有时可以发现在遍历HashSet时竟然是有序的,这其实并不冲突。

重点问题重点分析

TreeSet, LinkedHashSet and HashSet 的区别

TreeSet, LinkedHashSet and HashSet 在java中都是实现 Set 的数据结构:

  • TreeSet的主要功能用于排序
  • LinkedHashSet的主要功能用于保证FIFO即有序的集合(先进先出)
  • HashSet只是通用的存储数据的集合

相同点:

  • Duplicates elements: 因为三者都实现Set interface,所以三者都不包含duplicate elements
  • Thread safety: 三者都不是线程安全的,如果要使用线程安全可以Collections.synchronizedSet()

不同点:

  • Performance and Speed: HashSet插入数据最快,其次LinkHashSet,最慢的是TreeSet因为内部实现排序
  • Ordering: HashSet不保证有序,LinkHashSet保证FIFO即按插入顺序排序,TreeSet安装内部实现排序,也可以自定义排序规则
  • null:HashSet和LinkHashSet允许存在null数据,但是TreeSet中插入null数据时会报NullPointerException

代码比较

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public static void main(String args[]) {
HashSet<String> hashSet = new HashSet<>();
LinkedHashSet<String> linkedHashSet = new LinkedHashSet<>();
TreeSet<String> treeSet = new TreeSet<>();

for (String data : Arrays.asList("B", "E", "D", "C", "A")) {
hashSet.add(data);
linkedHashSet.add(data);
treeSet.add(data);
}

//不保证有序
System.out.println("Ordering in HashSet :" + hashSet);

//FIFO保证安装插入顺序排序
System.out.println("Order of element in LinkedHashSet :" + linkedHashSet);

//内部实现排序
System.out.println("Order of objects in TreeSet :" + treeSet);
}

运行结果:

Ordering in HashSet :[A, B, C, D, E] (无顺序)
Order of element in LinkedHashSet :[B, E, D, C, A] (FIFO插入有序)
Order of objects in TreeSet :[A, B, C, D, E] (排序)

TreeSet的两种排序方式比较

一、排序的引入(以基本数据类型的排序为例)

由于TreeSet可以实现对元素按照某种规则进行排序,例如下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class MyClass {
public static void main(String[] args) {
// 创建集合对象
// 自然顺序进行排序
TreeSet<Integer> ts = new TreeSet<Integer>();

// 创建元素并添加
// 20,18,23,22,17,24,19,18,24
ts.add(20);
ts.add(18);
ts.add(23);
ts.add(22);
ts.add(17);
ts.add(24);
ts.add(19);
ts.add(18);
ts.add(24);

// 遍历
for (Integer i : ts) {
System.out.println(i);
}
}
}

运行结果:

17
18
19
20
22
23
24

二、如果是引用数据类型呢,比如自定义对象,又该如何排序呢?

测试类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class MyClass {
public static void main(String[] args) {
TreeSet<Student> ts=new TreeSet<Student>();
//创建元素对象
Student s1=new Student("zhangsan",20);
Student s2=new Student("lis",22);
Student s3=new Student("wangwu",24);
Student s4=new Student("chenliu",26);
Student s5=new Student("zhangsan",22);
Student s6=new Student("qianqi",24);

//将元素对象添加到集合对象中
ts.add(s1);
ts.add(s2);
ts.add(s3);
ts.add(s4);
ts.add(s5);
ts.add(s6);

//遍历
for(Student s:ts){
System.out.println(s.getName()+"-----------"+s.getAge());
}
}
}

Student.java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class Student {
private String name;
private int age;

public Student() {
super();
// TODO Auto-generated constructor stub
}

public Student(String name, int age) {
super();
this.name = name;
this.age = age;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}
}

结果报错:

1

原因分析:

由于不知道该安照那一中排序方式排序,所以会报错。

解决方法:

  1. 自然排序
  2. 比较器排序

(1).自然排序

自然排序要进行一下操作:

  1. Student类中实现 Comparable 接口
  2. 重写Comparable接口中的Compareto方法
  3. compareTo(T o) 比较此对象与指定对象的顺序。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public class Student implements Comparable<Student>{
private String name;
private int age;

public Student() {
super();
// TODO Auto-generated constructor stub
}

public Student(String name, int age) {
super();
this.name = name;
this.age = age;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

@Override
public int compareTo(Student s) {
//return -1; //-1表示放在红黑树的左边,即逆序输出
//return 1; //1表示放在红黑树的右边,即顺序输出
//return o; //表示元素相同,仅存放第一个元素
//主要条件 姓名的长度,如果姓名长度小的就放在左子树,否则放在右子树
int num=this.name.length()-s.name.length();
//姓名的长度相同,不代表内容相同,如果按字典顺序此 String 对象位于参数字符串之前,则比较结果为一个负整数。
//如果按字典顺序此 String 对象位于参数字符串之后,则比较结果为一个正整数。
//如果这两个字符串相等,则结果为 0
int num1=num==0?this.name.compareTo(s.name):num;
//姓名的长度和内容相同,不代表年龄相同,所以还要判断年龄
int num2=num1==0?this.age-s.age:num1;
return num2;
}
}

运行结果:

lis-----------22
qianqi-----------24
wangwu-----------24
chenliu-----------26
zhangsan-----------20
zhangsan-----------22

(2).比较器排序

比较器排序步骤:

  1. 单独创建一个比较类,这里以MyComparator为例,并且要让其继承Comparator接口
  2. 重写Comparator接口中的Compare方法
  3. compare(T o1,T o2) 比较用来排序的两个参数。
  4. 在主类中使用下面的 构造方法: TreeSet(Comparator<? superE> comparator) 构造一个新的空 TreeSet,它根据指定比较器进行排序。

Student.java:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public class Student {
private String name;
private int age;

public Student() {
super();
// TODO Auto-generated constructor stub
}

public Student(String name, int age) {
super();
this.name = name;
this.age = age;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return age;
}

public void setAge(int age) {
this.age = age;
}

}

MyComparator类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class MyComparator implements Comparator<Student> {

@Override
public int compare(Student s1,Student s2) {
// 姓名长度
int num = s1.getName().length() - s2.getName().length();
// 姓名内容
int num2 = num == 0 ? s1.getName().compareTo(s2.getName()) : num;
// 年龄
int num3 = num2 == 0 ? s1.getAge() - s2.getAge() : num2;
return num3;
}

}

测试类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class MyClass {
public static void main(String[] args) {
//创建集合对象
//TreeSet(Comparator<? super E> comparator) 构造一个新的空 TreeSet,它根据指定比较器进行排序。
TreeSet<Student> ts=new TreeSet<Student>(new MyComparator());

//创建元素对象
Student s1=new Student("zhangsan",20);
Student s2=new Student("lis",22);
Student s3=new Student("wangwu",24);
Student s4=new Student("chenliu",26);
Student s5=new Student("zhangsan",22);
Student s6=new Student("qianqi",24);

//将元素对象添加到集合对象中
ts.add(s1);
ts.add(s2);
ts.add(s3);
ts.add(s4);
ts.add(s5);
ts.add(s6);

//遍历
for(Student s:ts){
System.out.println(s.getName()+"-----------"+s.getAge());
}
}
}

运行结果:

lis-----------22
qianqi-----------24
wangwu-----------24
chenliu-----------26
zhangsan-----------20
zhangsan-----------22

三、性能测试

对象类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Dog implements Comparable<Dog> {
int size;
public Dog(int s) {
size = s;
}
public String toString() {
return size + "";
}
@Override
public int compareTo(Dog o) {
//数值大小比较
return size - o.size;
}
}

主类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
public class MyClass {

public static void main(String[] args) {

Random r = new Random();
HashSet<Dog> hashSet = new HashSet<Dog>();
TreeSet<Dog> treeSet = new TreeSet<Dog>();
LinkedHashSet<Dog> linkedSet = new LinkedHashSet<Dog>();

// start time
long startTime = System.nanoTime();
for (int i = 0; i < 1000; i++) {
int x = r.nextInt(1000 - 10) + 10;
hashSet.add(new Dog(x));
}

// end time
long endTime = System.nanoTime();
long duration = endTime - startTime;
System.out.println("HashSet: " + duration);

// start time
startTime = System.nanoTime();
for (int i = 0; i < 1000; i++) {
int x = r.nextInt(1000 - 10) + 10;
treeSet.add(new Dog(x));
}
// end time
endTime = System.nanoTime();
duration = endTime - startTime;
System.out.println("TreeSet: " + duration);

// start time
startTime = System.nanoTime();
for (int i = 0; i < 1000; i++) {
int x = r.nextInt(1000 - 10) + 10;
linkedSet.add(new Dog(x));
}

// end time
endTime = System.nanoTime();
duration = endTime - startTime;
System.out.println("LinkedHashSet: " + duration);
}

}

运行结果:

HashSet: 1544313
TreeSet: 2066049
LinkedHashSet: 629826

虽然测试不够准确,但能反映得出,TreeSet要慢得多,因为它是有序的。

因觉得原作者总结的很全面很棒,为方便传阅与复习,遂转载,内容有修改完善部分。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/zhangqunshuai/article/details/80660974